Asynchronous approach in the plane: A deterministic polynomial algorithm¹

<u>Sébastien Bouchard</u>[†] Marjorie Bournat[†] Yoann Dieudonné[‡] Swan Dubois[†] Franck Petit[†]

[†]Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606, Paris, France

[‡]MIS Lab., Université de Picardie Jules Verne, France

ESTATE Meeting August 31 2017

¹This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French state funds managed by the ANR (Agence Nationale de la Recherche).

Deterministically bring two mobile asynchronous agents initially separated within each other's range of vision/communication

Czyzowicz, Pelc, and Labourel

Deterministic approach algorithm whose cost (total distance traveled) is exponential in D, the initial distance between the agents.

Czyzowicz, Pelc, and Labourel

Deterministic approach algorithm whose cost (total distance traveled) is exponential in D, the initial distance between the agents.

Does a polynomial algorithm exist?

Czyzowicz, Pelc, and Labourel

Deterministic approach algorithm whose cost (total distance traveled) is exponential in D, the initial distance between the agents.

Does a polynomial algorithm exist?

Tunnels

Two routes r_1 and r_2 respectively from nodes v_1 and v_2 form a *tunnel* iff r_1 has a prefix p which ends at v_2 and r_2 has a prefix which is \overline{p} *i.e.*, the reverse of p.

A first exponential solution

A first exponential solution

Bampas, Czyzowicz, Gasieniec, Ilcinkas, and Labourel

The agents know the coordinates of their initial location in a common coordinate system (some kind of GPS). Nearly optimal solution.

Bampas, Czyzowicz, Gasieniec, Ilcinkas, and Labourel

The agents know the coordinates of their initial location in a common coordinate system (some kind of GPS). Nearly optimal solution.

Dieudonné and Pelc

Each agent is assigned a constant speed which cannot change afterwards.

Reduction to rendez-vous in the infinite grid

Reduction to rendez-vous in the infinite grid

• Have to meet at a same point (either node or inside edge)

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting
- Execute locally our algorithm

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting
- Execute locally our algorithm
- Vision limited to current node and no communication

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting
- Execute locally our algorithm
- Vision limited to current node and no communication
- Unlimited memory

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting
- Execute locally our algorithm
- Vision limited to current node and no communication
- Unlimited memory
- Any distinct inital location and integer label

- Have to meet at a same point (either node or inside edge)
- Fully asynchronous setting
- Execute locally our algorithm
- Vision limited to current node and no communication
- Unlimited memory
- Any distinct inital location and integer label
- Compass

Deterministic algorithm whose cost (total number of edge traversals) is polynomial in the initial distance D and the length of the shorter label.

Simplifying assumption

Assume a synchronous setting

Simplifying assumption

Assume a synchronous setting

First issue

Initial separating distance D unknown

Simplifying assumption

Assume a synchronous setting

First issue

Initial separating distance D unknown

Solution: phases

Perform successive tests called phases:

During each test, the agents act as if the tested value were the good one. Phase $i \to$ Tested value 2^i

Phase	Phase	Phase	 Phase	Phase
0	1	2	π-1	π

Phase	Phase	Phase	 Phase	Phase
O	1	2	π-1	π

The good phase

Phase π with $2^{\pi-1} < D \leq 2^{\pi}$

Another issue

The grid is symmetric: if the agents keep performing the same actions they never meet

Another issue

The grid is symmetric: if the agents keep performing the same actions they never meet

Dessmark, Fraigniaud, Kowalski, and Pelc

Roughly speaking: each agent reads a binary sequence obtained from its label until they read different bits.
Tackling the symmetry

Tackling the symmetry

Another issue

The grid is symmetric: if the agents keep performing the same actions they never meet

Dessmark, Fraigniaud, Kowalski, and Pelc

Roughly speaking: each agent reads a binary sequence obtained from its label until they read different bits.

The good phase (update)

Phase π with $2^{\pi-1} < max\{D, \lambda\} \le 2^{\pi}$

So far, well known techniques.

From now on, we get into our actual contribution.

So far, well known techniques.

From now on, we get into our actual contribution.

Synchronisation mechanisms

The ahead agent *pushes* the other one:

Either they meet or the later agent makes some progress.

So far, well known techniques.

From now on, we get into our actual contribution.

Synchronisation mechanisms

The ahead agent *pushes* the other one: Either they meet or the later agent makes some progress.

Two kinds:

So far, well known techniques.

From now on, we get into our actual contribution.

Synchronisation mechanisms

The ahead agent *pushes* the other one: Either they meet or the later agent makes some progress.

Two kinds:

• First one: between bit readings, pushes the latest bit reading

So far, well known techniques.

From now on, we get into our actual contribution.

Synchronisation mechanisms

The ahead agent *pushes* the other one: Either they meet or the later agent makes some progress.

Two kinds:

- First one: between bit readings, pushes the latest bit reading
- Second one: between phases, pushes the previous phases

Removing the synchronous setting assumption

Waiting does not work!

Small break (1)

Small break (1)

Let us use reverse routes and tunnels.

Let us make v_0 the first node from which A_1 follows R_0 during its R_1 . Once again, we use tests separated by the first synchronization mechanism.

Third improvement once more based on tunnels

Third improvement once more based on tunnels

Third improvement once more based on tunnels

Last improvement: taking a look at the grid

Last improvement: taking a look at the grid

Last improvement: taking a look at the grid

Last improvement: taking a look at the grid

We have introduced the main ideas but these are not the actual routes we use. Unfortunately, due to the lack of time, we cannot explain them in more details.

Our contributions

First deterministic approach algorithm for a fully asynchronous setting whose cost is polynomial in the initial distance and the length of the labels.

Our contributions

First deterministic approach algorithm for a fully asynchronous setting whose cost is polynomial in the initial distance and the length of the labels.

Open question

Impact of the GPS on the cost ?