Distributed Property Testing

Pierre Fraigniaud CNRS and University Paris Diderot

> INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

ESTATE/VERIMAG Workshop on Distributed Algorithms Grenoble, France, August 31st, 2017

Property Testing (for graphs)

Objective: distinguish between graphs satisfying a given property P from graphs that are far from satisfying P.

ε-farness:

- Dense model: add/remove $\geq \epsilon n^2$ edges to satisfy P
- Bounded-degree model: add/remove ≥ ɛdn edges to satisfy P
- Sparse model: add/remove ≥ εm edges to satisfy P

Sequential Tester

Performs queries to nodes (labeled from 1 to n)

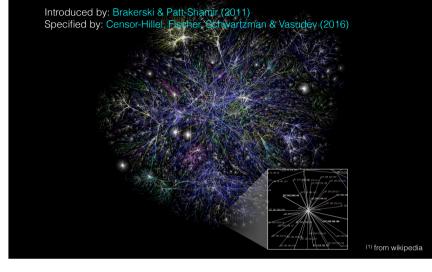
- what is the degree of node v?
- what is the ID of the ith neighbor of node v?

Objective: After o(n) queries, decide whether G satisfies P or not, in poly(n) time.

Typical Decision Rule

- If G satisfies P then $Pr[accept] \ge \frac{2}{3}$
- If G is ϵ -far from satisfying P then $Pr[reject] \ge \frac{3}{3}$

Distributed Property Testing



Distributed Decision Rule

- If G satisfies P then
 - $Pr[all nodes accept] \ge \frac{2}{3}$
- If G is ε -far from satisfying P then

 $Pr[at least one node rejects] \ge \frac{2}{3}$

CONGEST Model

- Nodes have IDs in a range [1,n^c]
- All nodes start simultaneously
- They perform is synchronous rounds

- Each round consists, for every node:
 - sending a message to each neighbor
 - receiving the message from each neighbor
 - computing, i.e., performing individual computation

Objective

Test whether G satisfies P in the least number of rounds, ideally O(1) rounds.

Example:

G

H-freeness: does G contains H as a subgraph?

Н

Theorem [Drucker, Kuhn, Oshman (2014)] Deciding C₄-freeness requires $\Omega(\sqrt{n})$ rounds, even using randomization.

Proof Reduction from set-disjointness in the context of communication complexity.

Distributed Decision (Lower Bound)

How many bits need to be exchanged between them?

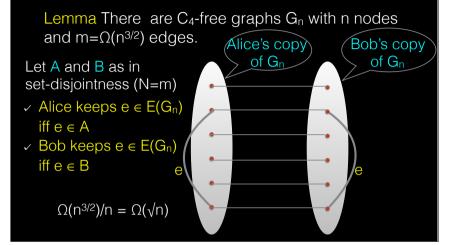
Set-disjointness

- Ground set S of size N
- Alice gets $A \subseteq S$, and Bob gets $B \subseteq S$

 $f(A,B) = 1 \iff A \cap B = \emptyset$

Theorem [Håstad & Wigderson (2007)] $CC(f) = \Omega(N)$, even using randomization.

Reduction from Set-Disjointness



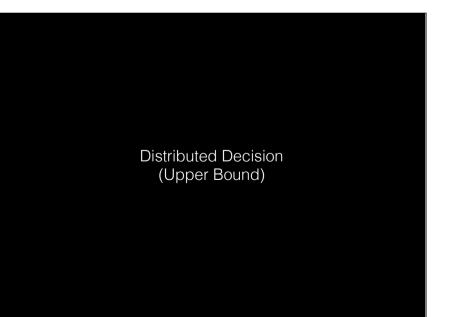
The bound is tight

U

V2

С

Algorithm 3 C_4 -detection executed by node u. 1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v 2: send deg(u) to all neighbors, and receive deg(v) from every neighbor v 3: $S(u) \leftarrow \{\text{IDs of the min}\{\sqrt{2n}, \deg(u)\} \text{ neighbors with largest degrees}\}$ 4: send S(u) to all neighbors, and receive S(v) from every neighbor v5: if $\sum_{v \in N(u)} \deg(v) \ge 2n + 1$ then output reject 6: 7: **else** if $\exists v_1, v_2 \in N(u), \exists w \in S(v_1) \cap S(v_2) : w \neq u$ and $v_1 \neq v_2$ then 8: output reject 9: 10: else11: output accept W end if Case 1: there exists a 'large' node w in C 12: Case 2: all nodes of C are 'small' 13: end if



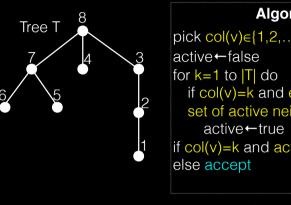
Deciding Tree-Freeness

Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)] Let T be a tree. There is a deterministic algorithm deciding T-freeness in O(1) rounds.

Remarks

- \checkmark no need of the ε -farness assumption.
- ✓ no need of randomization
- ✓ the big-O depends on k=|T| ^{ce} k^k rounds

A Simple Randomized Algorithm (color-coding technique)

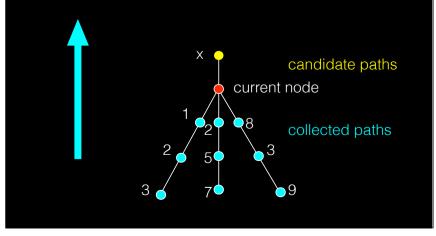


Algorithm

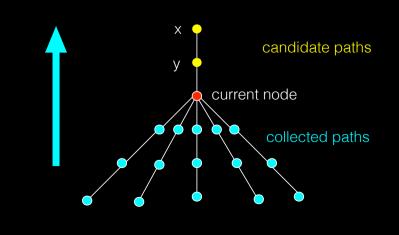
pick col(v)∈{1,2,...,k} u.a.r. if col(v)=k and exist well colored set of active neighbors then if col(v)=k and active then reject

 $Pr[tree T is detected] \ge 1/k^{k}$

Deterministic Algorithm Example: path (1)



Deterministic Algorithm Example: path (2)



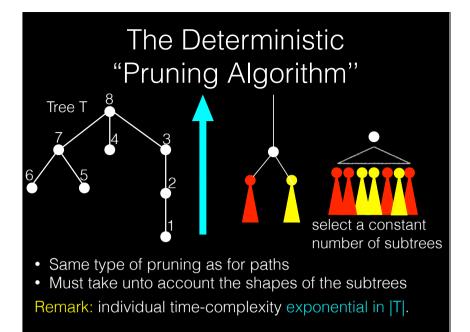
Pruning technique

Definition Let n > k > t. Let V be a set of size n, and F a collection of subsets of V with cardinality $\leq t$. A witness of F is a set F' \subseteq F such that, for any X \subseteq V with $|X| \leq k-t$, the following holds:

 $\exists Y \in F : X \cap Y = \emptyset \Rightarrow \exists Y' \in F' : X \cap Y' = \emptyset$

Lemma [Erdős, Hajnal, Moon] There exists a compact witness of F, i.e., a witness of F with cardinality independent of n.

Application to distributed property testing

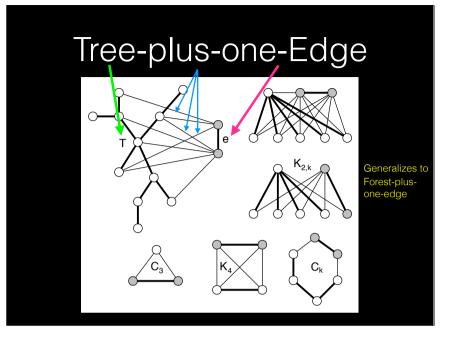


Testing H-freeness for a large class of graphs H

Sparse model: add/remove $\geq \epsilon m$ edges to satisfy P

Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)] Let H be a tree-plus-one-edge. There is a distributed tester for H-freeness running in O(1) rounds.

Remark the big-O depends on k=|H| and ε ^ω k^k/ε rounds



Algorithm

- Each edge picks a rank in [1,m²] u.a.r.
- The edge with minimum rank is used as an 'anchor' for the search for T
- Discard competing searches from high rank edges

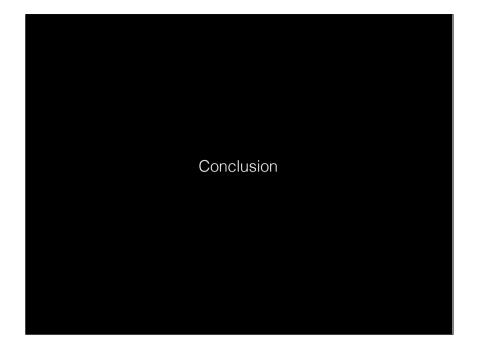
- C_k is a tree-plus-one-edge, for any $k \ge 3$.
 - ➡ C₃ [Censor-Hillel, Fischer, Schwartzman & Vasudev (2016)]

Corollaries

- ➡ C4 [F., Rapaport, Salo & Todinca (2016)]
- ➡ C_k [F. & Olivetti (2017)]
- K_k is a tree-plus-one-edge, for any $k \le 4$.
 - ➡ K₄ [F., Rapaport, Salo & Todinca (2016)]

DISC 2017 Notice

- Orr Fischer, Tzlil Gonen and Rotem Oshman. Distributed Property Testing for Subgraph-Freeness Revisited
- Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport and Ioan Todinca. Distributed Subgraph Detection
- Guy Even, Reut Levi and Moti Medina. Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST Model



Open problems

(1) Is there a distributed tester for K₅-freeness running in O(1) rounds in the CONGEST model?

(2) Characterization of graph patterns H for which H-freeness can be tested in O(1) rounds?

