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Property Testing 
(for graphs)

Objective: distinguish between graphs satisfying a given 
property P from graphs that are far from satisfying P.  

ε-farness: 

• Dense model: add/remove ≥ εn2 edges to satisfy P 

• Bounded-degree model: add/remove ≥ εdn edges to 
satisfy P  

• Sparse model: add/remove ≥ εm edges to satisfy P

Sequential Tester

Performs queries to nodes (labeled from 1 to n) 

what is the degree of node v? 

what is the ID of the ith neighbor of node v? 

Objective: After o(n) queries, decide whether G 
satisfies P or not, in poly(n) time.



Typical Decision Rule

• If G satisfies P then Pr[accept] ≥ ⅔ 

• If G is ε-far from satisfying P then Pr[reject] ≥ ⅔

Distributed Property Testing

(1) from wikipedia

Introduced by: Brakerski & Patt-Shamir (2011)  
Specified by: Censor-Hillel, Fischer, Schwartzman & Vasudev (2016) 

Distributed Decision Rule

• If G satisfies P then  

Pr[all nodes accept] ≥ ⅔ 

• If G is ε-far from satisfying P then  

Pr[at least one node rejects] ≥ ⅔

CONGEST Model
Nodes have IDs in a range [1,nc] 

All nodes start simultaneously 

They perform is synchronous rounds 

Each round consists, for every node:  
sending a message to each neighbor 

receiving the message from each neighbor 
computing, i.e., performing individual computation

messages of  
O(log n) bits



Objective
Test whether G satisfies P in the least number of 
rounds, ideally O(1) rounds.  

Example:  

H-freeness: does G contains H as a subgraph? 

G H

Distributed Decision 
(Lower Bound)

Why ε-farness? 
Why randomization?

Theorem [Drucker, Kuhn, Oshman (2014)]  
Deciding C4-freeness requires Ω(√n) rounds, even 
using randomization.  

Proof Reduction from set-disjointness in the 
context of communication complexity. 

Communication complexity

Alice Bob

f : {0,1}N x {0,1}N → {0,1}  

a ∈ {0,1}N b ∈ {0,1}N 

Alice & Bob must compute f(a,b) 

How many bits need to be exchanged between them? 



Set-disjointness

• Ground set S of size N 

• Alice gets A ⊆ S, and Bob gets B ⊆ S 

f(A,B) = 1 ⟺ A ∩ B = ⦰ 

Theorem [Håstad & Wigderson (2007)]  
CC(f) = Ω(N), even using randomization. 

Reduction from  
Set-Disjointness

Lemma There  are C4-free graphs Gn with n nodes 
and m=Ω(n3/2) edges. 

Let A and B as in  
set-disjointness (N=m)

Alice keeps e ∈ E(Gn) 
iff e ∈ A 
Bob keeps e ∈ E(Gn) 
iff e ∈ B

Alice’s copy  
of Gn

Bob’s copy  
of Gn

e e

Ω(n3/2)/n = Ω(√n) 

The bound is tight

Case 1: there exists a ‘large’ node w in C 
Case 2: all nodes of C are ‘small’
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Distributed Decision 
(Upper Bound)



Deciding Tree-Freeness
Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)]  
Let T be a tree. There is a deterministic algorithm 
deciding T-freeness in O(1) rounds.  

Remarks  

no need of the ε-farness assumption.  

no need of randomization 

the big-O depends on k=|T| ☞ kk rounds

A Simple Randomized Algorithm  
(color-coding technique)

Algorithm
pick col(v)∈{1,2,…,k} u.a.r. 
active←false 
for k=1 to |T| do 

if col(v)=k and exist well colored 
set of active neighbors then 

active←true 
if col(v)=k and active then reject 
else accept 
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Tree T

Pr[tree T is detected] ≥ 1/kk

Deterministic Algorithm 
Example: path (1)
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Deterministic Algorithm 
Example: path (2)

collected paths

candidate paths

current node
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Pruning technique
Definition Let n>k>t. Let V be a set of size n, and F 
a collection of subsets of V with cardinality ≤ t. A 
witness of F is a set F’⊆F such that, for any X⊆V 
with |X|≤k-t, the following holds:  

∃ Y∈F : X∩Y=∅  ⇒  ∃ Y’∈F’ : X∩Y’=∅ 

Lemma [Erdős, Hajnal, Moon]  There exists a 
compact witness of F, i.e., a witness of F with 
cardinality independent of n.   

The Deterministic  
“Pruning Algorithm’’
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Tree T

select a constant  
number of subtrees

• Same type of pruning as for paths 
• Must take unto account the shapes of the subtrees 
Remark: individual time-complexity exponential in |T|. 

Application to distributed property testing

Testing H-freeness for a 
large class of graphs H

Sparse model: add/remove ≥ εm edges to satisfy P 

Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)]  
Let H be a tree-plus-one-edge. There is a distributed 
tester for H-freeness running in O(1) rounds.  

Remark the big-O depends on k=|H| and ε  
☞ kk/ε rounds



Tree-plus-one-Edge

T e

C3 CkK4

K2,k Generalizes to  
Forest-plus- 
one-edge

Algorithm
• Each edge picks a rank 

in [1,m2] u.a.r. 

• The edge with minimum 
rank is used as an 
‘anchor’ for the search 
for T 

• Discard competing 
searches from high rank 
edges 

e

e’

Corollaries
• Ck is a tree-plus-one-edge, for any k ≥ 3. 

➡ C3 [Censor-Hillel, Fischer, Schwartzman & Vasudev (2016)] 

➡ C4 [F., Rapaport, Salo & Todinca (2016)] 

➡ Ck [F. & Olivetti (2017)] 

• Kk is a tree-plus-one-edge, for any k ≤ 4. 

➡ K4 [F., Rapaport, Salo & Todinca (2016)]
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Conclusion

Open problems

(2) Characterization of 
graph patterns H for 
which H-freeness can be 
tested in O(1) rounds? 

(1) Is there a distributed 
tester for K5-freeness 
running in O(1) rounds in 
the CONGEST model?

Thank you!


