
Relationships between
communication models based

on registers
for fault-tolerant distributed computing on

networks

Colette Johnen, Lisa Higham
Univ. Bordeaux, CNRS, LaBRI, UMR 5800

1

Semantics of a register

[Lamport 86]

ESTATE/VERIMAG – Sept 17 2

Single-Writer Register (SR)- def

• A register is a memory cell on which two types of
operations are possible READ and WRITE

• On a Single-Writer register, only one process can do the
WRITE operation

• On a register R, READ and WRITE operation are not

atomic, they take some time

A READ operation on a register R may overlap several
WRITE operations on R

ESTATE/VERIMAG – Sept 17 3

Single-Writer register - semantic

• On R, a READ operation that does not overlap any WRITE

operation returns the most recent preceding written value
(v1) in R

WRITE value v1 READ returns v1

time

ESTATE/VERIMAG – Sept 17 4

• On R, a READ operation that does overlap a WRITE

operation may return any value

Safe register [Lamport 86]

WRITE v2

time

WRITE v1 WRITE v3

READ returns v1, v2, v3, or v4

ESTATE/VERIMAG – Sept 17 5

• On R, a READ operation that does overlap a WRITE

operation returns the most recent preceding written value
or any value written during overlapping WRITE operations

Regular and Atomic register
[Lamport 86]

WRITE v2

time

READ returns v1, v2, or v3

WRITE v1 WRITE v3

ESTATE/VERIMAG – Sept 17 6

READ returns v1 or v2

Atomic register [Lamport 86]

• On R, if a READ operation returns the value written during
the overlapping WRITE operation then any subsequence
READ cannot return the most recent preceding written

value (v1)

WRITE value v2

time

READ returns v2

v1

READ returns v2

ESTATE/VERIMAG – Sept 17 7

READ returns v1

Property of atomic registers

• A sequence of operations on an atomic register is
linearizable [Herlihy, Wing 90]

Each operation appears to happen instantaneously at
some point during its execution

WRITE v1

time

READ returns v1

WRITE v2

WRITE WRITE READ

ESTATE/VERIMAG – Sept 17 8

Regular register

• A sequence of operations on an regular register may not
linearizable

WRITE value v2

READ returns v2

READ returns v1

READ READ

ESTATE/VERIMAG – Sept 17 9

Communication Model on networks

ESTATE/VERIMAG – Sept 17 10

Distributed computing on networks

A processor can only
communicate with its
neighbors

Ex: p can only communicate
with q and t

Topology G

t

p

s

q

ESTATE/VERIMAG – Sept 17 11

Communication modelS based on
Single-Writer registers

• a single register per
process : multi-reader
register

[MN98], [AS99], [H00],
[NA02]

• a register is associated
to a link : single-reader
register

[DIM93], [Dolev 02]

Topology G

t

p

q

ESTATE/VERIMAG – Sept 17 12

a single register per process :
state network model

t

p

q

Rp

Rt

A processor p has a single
atomic single-writer multi-
reader register Rp

Rp is readable by p’s
neighbors : q and t

Rp is writable by p

State(G)

Rq

ESTATE/VERIMAG – Sept 17 13

Communication model for network:
link network model

Rpt Rtp Rqp Rpq

A processor p has several
atomic single-writer
single-reader registers
(one per neighbor)

Rpt is readable by t

Rpt is writable by p Link(G)

t

p

q

ESTATE/VERIMAG – Sept 17 14

Communication models based
on registers on network G

Semantic

location

 Atomic Regular Safe

 State

multi-reader

atomic-state(G)

[MN98], [AS99], [H00],

[NA02]

regular-

state(G)

safe-

state(G)

Link

singler-

reader

atomic-link(G)

Read-Write atomicity

model

[DIM93], [Dolev 02]

regular-

link(G)

safe-

link(G)

ESTATE/VERIMAG – Sept 17 15

Distributed System

S = (G : Graph, MC : Communication Model, A : Algo)

Computation of S is the set of computations of A on MC(G)

Goal : to implement every algorithm A for MC1(G) on

MC2(G)

ESTATE/VERIMAG – Sept 17 16

Transformation : MC1(G) MC2(G)

Let R be a register of MC1(G) writable by p and readable by q

Transformation is two programs
(READ(R)) returns a value

(WRITE(R,v))

These two programs are a series of valid READ and WRITE

operations on registers of MC2(G)

(WRITE(R,v)) invocation by p contains only READ and

WRITE operations on registers respectively readable or

writable by p
(READ(R)) invocation by q contains only READ and

WRITE operations on registers respectively readable or

writable bq

 ESTATE/VERIMAG – Sept 17 17

Simple Transformation State Link

On p,

(STATE-WRITE(Rp,v)) :

for every q in neighborhood of p do
 LINK-WRITE(Rpq, v)

(STATE-READ(Rq))

v LINK-READ(Rqp)

return v

p

t q

Rpt Rtp Rqn
Rpq

Link(G)

P

t q

Rp
Rt

State(G)

Rq

ESTATE/VERIMAG – Sept 17 18

Transformation : MC1(G) MC2(G)

Transformation is two programs
(READ(R)) returns a value

(WRITE(R,v))

 These two programs are a series of valid READ and

WRITE operations on registers of MC2(G)

• Let A be an algorithm on MC1(G)

 (A) : READ(R) and WRITE(R, v) operation invocations in A

are respectively replaced by two program executions
(READ(R)) and (WRITE(R, v))

(A) is an algorithm on MC2(G)

ESTATE/VERIMAG – Sept 17 19

 be a transformation of MC1(G) to MC2(G)

 S1=(G, MC1, A) → S2=(G, MC2, (A))

(A) : READ(R) and WRITE(R, v) operation invocations in A are

respectively replaced by two program executions (READ(R))

and (WRITE(R, v))

(A) is an algorithm on MC2(G)

 The transformation is a compiler iff S2=(G, MC2, (A)) is a

syntactically and semantically valid transformation of

S1 = (G, MC1, A)

Compiler : MC1(G) MC2(G)

ESTATE/VERIMAG – Sept 17 20

Nov 2008 21

Wait-free implementation of binary regular
SWSR register by a binary safe SWSR

register [Lamport 86]

(REG-WRITE(R,new))

 if old ≠ new then

 SAFE-WRITE(Rs,new))

 old new;

 fi

(REG-READ(R))

 SAFE-READ(Rs)

Writer
Reader Rs

old

ESTATE/VERIMAG – Sept 17 21

Fault tolerance : Wait-Freedom

Wait-free operation: a processor can complete the operation
in a finite number of steps, regardless of the actions of
other processors

(i.e. a READ and a WRITE operation is done in finite number

of steps)

A wait-free operation is tolerant of processor crashes

a compiler is wait-free if it preserves the wait-freedom
property

ESTATE/VERIMAG – Sept 17 22

Fault-tolerance : Self-Stabilization

• Self-stabilization system automatically convergence to a

legitimate configuration from any arbitrary configuration.

From a legitimate configuration, the system behaves

correctly (i.e. semantic of READ and WRITE operations is

provided).

A self-stabilizing system is tolerant of transient failures that
corrupt the processor state.

a compiler is self-stabilizing if it preserves the self-stabilizing
property

ESTATE/VERIMAG – Sept 17 23

All reads of the following execution return 1:
[(regular-write(R,0), regular-read(R)]*

Writer
Reader Rs=1

old=0

Lamport construction is not self-stabilizing

Wait-free implementation of binary regular
SWSR register by a binary safe SWSR

register [Lamport 86]

ESTATE/VERIMAG – Sept 17 24

Nov 2008 25

Self-stabilizing, Wait-free implementation of
SWSR regular binary register by a
 dual-reader safe binary register

[Hoepman, Papatriantafilou, Tsigas 02]

Writer Reader Rs

(REG-WRITE(R,new))

if SAFE-READ(Rs)≠ new
 then

 SAFE-WRITE(Rs,new))

fi

(REG-READ(R))

 SAFE-READ(Rs)

ESTATE/VERIMAG – Sept 17 25

Simple Transformation State Link

On p,

(STATE-WRITE(Rp,v)) :

for every q in neighborhood of p do
 LINK-WRITE(Rpq, v)

(STATE-READ(Rq))

v LINK-READ(Rqp)

return v

p

t q

Rpt Rtp Rqn
Rpq

Link(G)

P

t q

Rp
Rt

State(G)

Rq

ESTATE/VERIMAG – Sept 17 26

(ATOMIC-STATE-WRITE(Rp, v2))

ATOMIC-LINK-WRITE(Rpq) ATOMIC-LINK-WRITE(Rpt)

Linearization of an execution of
 simple transformation on atomic registers ?

time

v1
p

q

Operations on Rp

WRITE(Rpq, v2) WRITE(Rpt,v2)

(ATOMIC-STATE-WRITE(Rp, v2))
v2

t

R
v1

R
v1

R
v2

R

v1

R
v2

R = (ATOMIC-STATE-READ(Rp))

v2

R

ESTATE/VERIMAG – Sept 17 27

NO

time

v1

p

q

t

R
v1

R
v1

R
v2

R
v1

R = (ATOMIC-STATE-READ(Rp))

v2

R

ESTATE/VERIMAG – Sept 17 28

Wait-Free compiler Atomic-State(G)
Atomic-Link(G) ?

R
v1

R
v1

W

(ATOMIC-STATE-WRITE(Rp, v2)) v2

W W W W

R
v2

R
v2

R
v2

NO

Rp

Higham, Johnen 07

Higham,
Johnen 06

Lamport

1986

Lamport

1986

Wait-free compilers

State

multi-
reader

Atomic Regular

Link

Single
reader

Safe

ESTATE/VERIMAG – Sept 17 29

State

Multi-
reader

Atomic Regular

Link

Single
reader

Safe

Self-stabilizing compilers

L. Higham, C.
Johnen 06

C. Johnen, L. Higham 07

ESTATE/VERIMAG – Sept 17 30

Self-Stabilizing compiler Atomic-State(G)
 Atomic-Link(G) [IPDPS06]

Drawbacks/Features of Self-Stabilizing compiler from Atomic-
State(G) to Atomic-Link(G) [IPDPS06] :

• (ATOMIC-STATE-WRITE(Rp)) is not wait-free : during an
execution of (ATOMIC-STATE-WRITE(Rp)) any p’s
neighbor, q, has to do the operation ATOMIC-LINK-
READ(Rpq) two times

• Each process performs infinitely often ATOMIC-STATE-
READ operations

• (ATOMIC-STATE-READ(Rp)))) is not wait-free

• Each process performs two ATOMIC-STATE-WRITE

operations

ESTATE/VERIMAG – Sept 17 31

Self-Stabilizing compiler Atomic-State(G)
 Regular-State(G)

Drawbacks/Features of compiler from Atomic-State(G) of
Regular-State(G) :

• (ATOMIC-STATE-WRITE(Rp)) is wait-free

• (ATOMIC-STATE-READ(Rp)) is not wait-free in case there
is an overlay (ATOMIC-STATE-WRITE (Rp))

• Each process p performs one (ATOMIC-STATE-WRITE
(Rp)) operation

ESTATE/VERIMAG – Sept 17 32

«Lamport 86 »

Conjecture

Wait-free and Self-stabilizing compilers

State

multi-
reader

Atomic Regular

Link

Single
reader

Safe

Johnen, Higham 09

Simple
transformation

ESTATE/VERIMAG – Sept 17 33

Grenoble – Sept 17 34

Bibliography

• Self-stabilizing algorithms in ATOMIC-LINK

network model :

[DIM93], [Dolev 02]

called R/W atomicity model

• Self-stabilizing algorithms in ATOMIC-STATE

network model :

[MN98], [AS99], [H00], [NA02]

Grenoble – Sept 17 35

compilerAtomic-state to Atomic-link

A register has 4 fields :

• written value and written flag

• copied value and copied flag

Grenoble – Sept 17 36

Definition of atomic-Link procedures

 Write Rxy

(v, f, -, -)
 Read Rxy

 (-, -, v, f)

Read Rxy (wv, wf, cv, cf) : an atomic-link-read(Rxy) operation

retuning: w_v, w_f, c_v, c_f

Acknowledged-writing in Rxy of (v, f) - by x:

Write Rxy (wv, wf, cv, cf) : an atomic-link-write(Rxy)

operation to write w_v, w_f, c_v, c_f

Acknowledged-reading in Rxy of (v, f) - by x:

 Read Rxy

(v, f, -, -)

 Write Rxy

(-, -, v, f)

Grenoble – Sept 17 37

(ATOMIC-STATE-WRITE(-,-))

(ATOMIC-STATE-WRITE(Rt,v2))

acknowledged-writing

in Rtp of (v2, 0)

Procedures on Rtp during a (ATOMIC-STATE-WRITE(Rt,

v2))

By t:

By p:

acknowledged-writing

in Rtp of (v2, 1)

acknowledged-

reading in

Rpt of (v2, 0)

acknowledged-

reading in

Rpt of (v2, 1)

Grenoble – Sept 17 38

(ATOMIC-STATE-WRITE(-,-))

(ATOMIC-STATE-WRITE(Rp,v)

Procedures on Rpt or Rpq during a (ATOMIC-STATE-
WRITE(Rp,-))

A-W in Rpt
of (v, 0)

A-W in Rpq
of (v, 0)

A-W in Rpt
of (v, 1)

A-W in Rpx of (v, f) : an acknowledged-writing in Rpx of (v, f)

- by p

Grenoble – Sept 17 39

A-W in Rpt
of (v, 1)

August 2006 40

(ATOMIC-STATE-READ(Rx)) by y

(ATOMIC-STATE-WRITE(Rx)returning v

Procedures on Rxy during a (ATOMIC-STATE-READ(Rx))
by y

By y:

A-R in Rxy

of (-, 0)

A-R in Rxy

of (-, 0)

A-R in Rxy

of (v, 1)

A-R in Rxy of (v, f) : an acknowledged-reading(Rxy) returning

(v, f)

Grenoble – Sept 17 41

August 2006 42

No wait-free compiler on network

Let G be a network topology that is not complete

Theorem: there is not wait-free compiler from AS(G)
to AL(G)

IPDPS’06

Grenoble – Sept 17 43

1-Regular
[Abraham, Chockler, Keidar, Malkhi 07]

On R, a READ operation that does overlap a single WRITE

operation returns the most recent preceding written value
(v1) or the value written during the overlapping WRITE

operations (v2)

WRITE v2

time

WRITE v1 WRITE v3

READ returns v1 or v2

READ returns v1, v2, v3, or v4

ESTATE/VERIMAG – Sept 17 44

