
Tools and Benchmark

for robustness code evaluation

against fault injection

Marie-Laure Potet and Lionel Morel

VERIMAG, Grenoble, France
CEA-Dacle, Grenoble, France

21 mai 2018

1 / 12

Challenges :

) How to build and evaluate applications robust against fault
injection attacks ?

Reproductible evaluation processes :
I tools adaptable to new fault models and attack technics
I evaluation process adaptable to the considered context

(smartcard, secure element, Iot, TEE, . . .) and expected level
of assurance

Spatial and temporal multi-fauts as a the state-of-the-art
requiring to to revisit :

I fault model combination and representative attacks
I helping developpers to chose adapted counter-measures
I result analysis and robustness evaluation metrics

2 / 12

Our works

A whole process for helping vulnerability analysis (CEA
Cesti/VERIMAG)
FISCC : a Fault Injection and Simulation Secure Collection
(project ANR-DGA ASTRID 2014)
Lazart : a public tool based on symbolic execution for helping
developers and auditors
Adding ccounter-measures at the compiling time (CEA-Dacle)
A new type of application and domain : attacking secure boots
(project IRT Nanoelec CLAPS)

3 / 12

From Perturbation Attack to Fault Injection

Perturbation

Behavior changes

Injection

Fault

p

Model

f

Attacker cannot choose the fault in code with precision

f =̂ (i = 124, store([0x540d], 0))

Only chooses the parameters of the equipment

p =̂ (x = 12 µm, y = 24 µm, d = 3800 ns,w = 850 ns)

4 / 12

Assessing Robustness Against Fault Injection
Is an embedded application robust against fault injection ?

Penetration Testing : Physical perturbation attacks on the
application under test to inject faults.

I Look for successful attacks (=compromising security).
I Factors for Attack Potential Calculation

Code Analysis : Detect vulnerabilities in the application with
a code review.

I Look for attack paths using a given fault model.
I Originally manual process, now with automatic tools
I Success rate T = F

S

F .

Elapsed time Rating

< one hour 0

< one day 3

< one week 4

< one month 6

> one month 8

Not practical _

Figure – The 2 processes
5 / 12

The Louis Dureuil’s thesis end-to-end Approach

Fault Model

Application

Fault Model
Inference

Device Attacker Equipment

Fault Injection
Simulator

Successful Attacks

Attacker Model

Rating

Metrics for Robustness

Device Level

Applicative Level

Evaluation Level

6 / 12

Lazart (1)
) C code robustness evaluation against fault injection based on
symbolic execution

a single mutant embbeding fault models and fault injections
guided by a goal : reach or avoid a CFG block or a logical
formula
supporting multiple faults and several (potentially symbolic)
fault models
strategies to inject faults depending on the fault model and
goals.

! ! ! ! !

appli.ll!
CFG$

Coloring$
Mutant$

Generation$Attack!
Objective!

1$
appli.ll!Mutation!

Strategy!

mutant.ll!

Symbolic$test$
case$generation$

✔!

2$

Attack!path! Inconclusive! Robustness!

3$

7 / 12

Lazart (2)

A notion of redundant attacks (fault injection points)
Scenario representation in terms of graphs
Could be used for countermeasures analysis

#fault injection #attacks #non redundant attacks

1 2 2

2 9 1

3 19 0

4 21 1

8 / 12

Countermeasures analysis

Objectives : how to choose adapted countermeasures ?

depend on the fault model
could be costly
complexity due to multiple fault injection (CM can be
attacked)

Exemple

Reach CM (1F) Attaques (1F) Reach return (¬CM et ¬Auth)

Nb appels CM

0F 1F

VPIN0 N/A 2 1 0 0

VPIN1 1 2 1 2 1

VPIN2 5 2 1 5 1

VPIN3 5 2 1 5 1

VPIN4 8 2 1 5 5

VPIN5 7 0 1 5 2

VPIN6 7 0 1 5 3

VPIN7 17 0 1 5 13

) Could be extended to the point where countermeasures are
raised.

9 / 12

FISSC : an open source secure collection

Content :

A collection of (extensible) examples
High level attack scenarios with regard to success oracles

Example Oracle
VerifyPIN g_authenticated == 1

VerifyPIN g_ptc >= 3

KeyCopy ! equal(key, keyCpy)

GetChallenge equal(challenge, prevChallenge)

CRT-RSA (g_cp == pow(m,dp) % p && g_cq != pow(m,dq) % q)
|| (g_cp != pow(m,dp) % p && g_cq == pow(m,dq) % q)

Countermeasures : hardened booleans, virtual stack, double arguments, step counter,
loop counter, data redundancy, double calls, double tests, control flow integrity

Programming Features : Explicit call, Fixed Time Loops, inlining

10 / 12

Results

Normalized and modular examples
C sources and Thumb-2 assembly
listings
high-level attack scenarios on CFG

Example 1-fault 2-fault
VerifyPIN 2 0
+fixed time loops 2 1
+FTL +inlining 2 1
+FTL +INL +loop counter 2 0
+FTL +double calls 0 4
+FTL +INL +double tests 0 3
+FTL +INL +DT +step counter 0 2
+control flow integrity 0 2
+FTL +INL +DT +SC +CFI 0 1

11 / 12

Using the benchmark

Get http://sertif-projet.forge.imag.fr/

Analyze C sources, asm listings

Compare your results against the archived results

Contribute your examples, countermeasures and results

) An example with results using CELTIC and EFS :
http://sertif-projet.forge.imag.fr/pages/example.html

12 / 12

http://sertif-projet.forge.imag.fr/
http://sertif-projet.forge.imag.fr/pages/example.html

	Fault injection and Code Analysis

