
SOFTWARE COUNTERMEASURES AGAINST PHYSICAL ATTACKS
IN EMBEDDED SYSTEMS

Damien Couroussé, Nicolas Belleville | LIST / DACLE
Workshop PROSECCO | 20181106 | LIP6

| 2

CEA TECH DACLE

Grenoble Saclay

> 150 scientific
papers per year

45 patents
per year

60 PhD students &
postdocs

300 members
160 permanent

researchers

DACLE
Architectures, IC Design &

Embedded Software Division

© CEA 2018. All rights reserved

| 3

CYBERSEC IN DACLE

Embedded software
and compiler

Low–power and FDSOI
design

Design in emerging
technologies

Automatic application of HW/SW
counter–measures against physical attacks

Attack monitors and detection by machine
learning against combined attacks

Secure, programmable in-memory computing

Low-power crypto-accelerators protected
against physical attacks

Secure virtual–machines in cloud

Design for security in new memory
technologies

| 5

• One of the major threats against secure embedded systems
• The only effective classes of attacks against crypto-systems
• Relevant in many cases against cyber-physical systems: bootloaders, firmware

upgrade, etc.

PHYSICAL ATTACKS

side channel attacks fault attacks

binary codesource code compiler

Source to source
approach

Assembly
approach

Our approach
• Application of software countermeasures in a software toolchain

Towards secured and efficient software components
© CEA 2018. All rights reserved

| 6

Security
evaluation

Performance
evaluation

compilateur

COGITO

Automated application of software countermeasures against physical attacks
Î A toolchain for the compilation of secured programs

LLVM compiler
CEA

extensions

Legacy source
code, unsecured

Secured
machine code

User security
annotations

- Several countermeasures
• Fault tolerance, including multiple fault

injections
• Fault detection & Control-Flow Integrity

• Combined with integrity of execution
paths at the granularity of a single
machine instruction

• Side channel hiding

- Tools for security and performance
evaluations

based on LLVM: an industry-grade, state-of-
the art compiler (competitive with GCC)

CO
GI

TO

© CEA 2018. All rights reserved

| 7

Aim: the component is not perturbed by the injection of multiple faults
• Countermeasure based on a protection scheme formally verified for the ARM architecture

[Moro et al., 2014, Barry et al. 2016]
• Generalisation of [Moro et al., 2014] to multiple faults of configurable width
• Automatic application by the compiler
• Allow to parameterize level of protection
• Target: ARM Cortex-M cores

• Fine-grained application of the countermeasure reduces the execution overhead below x1.23
and size overheads below x1.12 [Barrys’ thesis, 2017]

FAULT TOLERANCE

[Moro et al., 2014] Moro, N., Heydemann, K., Encrenaz, E., & Robisson, B. (2014). Formal verification of a software countermeasure against instruction
skip attacks. Journal of Cryptographic Engineering, 4(3), 145-156.
[Barry et al. 2016] Barry, T., Couroussé, D., & Robisson, B. (2016, January). Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. In
Proceedings of the Third Workshop on Cryptography and Security in Computing Systems (pp. 1-6). ACM. © CEA 2018. All rights reserved

| 8

FAULT DETECTION & CFI

Objectives: detection of a fault injection.
Combined protections:
• Protection of the control-flow of an application (Control-Flow Integrity)
• Beyond CFI: protection of branchless sequences of instructions, at the granularity of

a single machine instruction

Coverage
• Alteration of the PC (instruction skips,

branches)
• Corruption of branches
• Alteration of branch conditions

Implementations
• Software only countermeasure.

Implementation for ARM
• HW-SW countermeasure. Fine-grain

execution integrity, verification &
authentication. WIP implementation
for RISC-V

Secured transition

Illegal transition

Secured application component

Unsecured component

© CEA 2018. All rights reserved

2

2 2

| 9

balise 1 instruction 1 balise 2 instruction 2 balise 3 instruction 3 balise 𝒊 instruction 𝒊

On vérifie le chemin d’exécution pour le bloc de
base #1 :
• La vérification précédente v0 est correcte
• L’exécution a rencontré les balises 1, 2 et 3

instruction 4
instruction 5
instruction 6

instruction 7
instruction 8
instruction 9

Instruction 1
Instruction 2
instruction 3

instruction 10
instruction 11
instruction 12

Flot de contrôle initial

#1

#2

#3
#4

Alignement des instructions de telle sorte
que chacune soit inséparable de sa balise
correspondante dans une fenêtre de tire

Vérification si plusieurs
prédécesseurs

Conditions sur le flot de contrôle

Flot de contrôle sécurisé contre le détournement de flot de
contrôle et contre l’altération d’instruction

v1 ← vérif(v0,1,2,3)
balise 4
instruction 4
balise 5
instruction 5
balise 6
instruction 6

v2 ← vérif(v1,4,5,6)
balise 7
instruction 7
balise 8
instruction 8
balise 9
instruction 9

v0 ← vérif(...)
balise 1
instruction 1
balise 2
instruction 2
balise 3
instruction 3

v3 ← vérif(v1,4,5,6)
balise 10
instruction 10
balise 11
instruction 11
balise 12
instruction 12

vérif(v2,7,8,9 ou v3,10,11,12)

#1

#2

#3 #4

#5

PRINCIPE DE
FONCTIONNEMENT

© CEA 2018. All rights reserved

| 10

SIDE CHANNEL HIDING

Code polymorphism: regularly changing the behavior of a (secured) component,
at runtime, while maintaining unchanged its functional properties,

• Protection against physical attacks: side channel & fault attacks
• Changes the spatial and temporal properties of the secured code
• Can be combined with other state-of-the-Art HW & SW Countermeasures

• Implementation with runtime code generation
• Demonstrator with 8KBytes RAM – STM32

© CEA 2018. All rights reserved

| 11© CEA 2018. All rights reserved

• Toolchain for the application of code polymorphism,
targetting embedded systems

• Resistance against side-channel attacks
• CPA: 50 traces Æ 5.10^6 traces
• TLVA evaluation / t-test
• Increased resistance to resynchronisation of observation traces
• Increased resistance against template attacks (study on verifyPIN)

• Compatible with certification standards – Common Criteria
• Compatible with program encryption

PROJECT RESULTS

AUTOMATED SOFTWARE PROTECTION
FOR THE MASSES

AGAINST SIDE-CHANNEL ATTACKS

| 16© CEA 2018. All rights reserved

• Ability to change the observable behaviour of a software component
without changing its functional properties

• Hiding coutermeasure
• does not remove the leakage

• Our approach:
• use of runtime code generation to make the code vary
• specialized generator: each polymorphic function has its own generator
• set of assembly-level code transformation

CODE POLYMORPHISM

| 17© CEA 2018. All rights reserved

• How to write automatically a generator?
• Runtime code generation is usually expensive
• Runtime code generation needs W and X permissions
• Code size varies from one generation to another...

• Semantic equivalent
• Insertion of noise instructions

• ...but platform may not have dynamic memory allocation features

PROBLEMS WE WANTED TO ANSWER

| 18© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 19© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 20© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

Main idea:
For each targetted function:
- get a sequence of instructions
- construct a generator from that
- modify the sequence of instructions dynamically

| 21© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

| 22© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

User annotates critical functions

| 23© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

#pragma odo_polymorphic
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

| 24© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

#pragma odo_polymorphic
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

User chooses the polymorphism
configuration

| 25© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

#pragma odo_polymorphic
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

File is compiled with our
modified compiler

| 26© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

#pragma odo_polymorphic
int f_critical(int a, int b) {

int c = a^b;
a = a+b;
a = a % c;
return a;

}

File is compiled with our
modified compiler

The compilation goes
through all usual steps

until having the assembly
code ready to be emitted

| 27© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

code code_f[CODE_SIZE];
void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);
reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
push_T2_callee_saved_registers();
eor_T2(r[4], r[1], r[0]);
add_T2(r[0], r[1], r[0]);
sdiv_T2(r[1], r[0], r[4]);
mls_T2(r[0], r[1], r[4], r[0]);
pop_T2_callee_saved_registers();
raise_interrupt_rm_W_add_X(code_f);

}
int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())
SGPC_f_critical();

return code_f(a, b);
}

| 28© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

code code_f[CODE_SIZE];
void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);
reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
push_T2_callee_saved_registers();
eor_T2(r[4], r[1], r[0]);
add_T2(r[0], r[1], r[0]);
sdiv_T2(r[1], r[0], r[4]);
mls_T2(r[0], r[1], r[4], r[0]);
pop_T2_callee_saved_registers();
raise_interrupt_rm_W_add_X(code_f);

}
int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())
SGPC_f_critical();

return code_f(a, b);
}

| 29© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

code code_f[CODE_SIZE];
void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);
reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
push_T2_callee_saved_registers();
eor_T2(r[4], r[1], r[0]);
add_T2(r[0], r[1], r[0]);
sdiv_T2(r[1], r[0], r[4]);
mls_T2(r[0], r[1], r[4], r[0]);
pop_T2_callee_saved_registers();
raise_interrupt_rm_W_add_X(code_f);

}
int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())
SGPC_f_critical();

return code_f(a, b);
}

| 30© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

code code_f[CODE_SIZE];
void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);
reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
push_T2_callee_saved_registers();
eor_T2(r[4], r[1], r[0]);
add_T2(r[0], r[1], r[0]);
sdiv_T2(r[1], r[0], r[4]);
mls_T2(r[0], r[1], r[4], r[0]);
pop_T2_callee_saved_registers();
raise_interrupt_rm_W_add_X(code_f);

}
int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())
SGPC_f_critical();

return code_f(a, b);
}

| 31© CEA 2018. All rights reserved

• Start from a C file
• Produce a new C file with polymorphism countermeasure applied to target

functions

AUTOMATIC APPLICATION OF CODE
POLYMORPHISM

File.c

code code_f[CODE_SIZE];
void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);
reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
push_T2_callee_saved_registers();
eor_T2(r[4], r[1], r[0]);
add_T2(r[0], r[1], r[0]);
sdiv_T2(r[1], r[0], r[4]);
mls_T2(r[0], r[1], r[4], r[0]);
pop_T2_callee_saved_registers();
raise_interrupt_rm_W_add_X(code_f);

}
int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())
SGPC_f_critical();

return code_f(a, b);
}

| 32© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 33© CEA 2018. All rights reserved

• Register shuffling
• Permutation among all equivalent registers

• Instruction shuffling
• Shuffling of independent instructions (use/def register analysis)

• Use of semantic equivalent
• Random choice between sequences of instructions equivalent to the original

instruction
• Semantic equivalents available for a limited number of instructions
• Ex: a xor b <=> (a xor r) xor (b xor r)

• Insertion of noise instructions
• Useless instructions among frequently used ones (xor, sub, load, add)
• A probability model determines the number of noise instructions to be inserted

(possibly 0)
• One insertion in between each pair of original instructions

CODE TRANSFORMATIONS USED AT RUNTIME

| 34© CEA 2018. All rights reserved

• Dynamic noise sequences inserted in between useful instructions
• Exactly like « classic » noise instructions
• Sequence of noise instructions with a random jump

• Jump #random actually done in 6 assembly instructions
• Lowers correlation between generation phase and execution phase
• Allows use of wider regeneration period

CODE TRANSFORMATIONS USED AT RUNTIME

Jump #random
Noise instructions block

…

End of noise instructions block

| 35© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 36© CEA 2018. All rights reserved

• W and X permissions required for dynamic code generation

• Use the specialisation of generator to change permissions

• For each secured function, only one generator allowed to write in allocated
buffer

• Interrupt raised to change memory permissions between W only and X only
• When generation begins: X only to W only
• When generation ends: W only to X only
• Interrupt handler knows which generator is associated with which memory zone

MANAGEMENT OF MEMORY PERMISSIONS

| 37© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 38© CEA 2018. All rights reserved

• How to determine a realistic size for allocation?
• Worst case is terrible and never happens in programs long enough

→ need for a better metric
• Worst case used for semantic equivalents only:

• Size of longest semantic equivalent
• e.g. if (a xor b) can be replaced by (a xor r) xor (b xor r), we reserve space for 3 xor

instructions

STATIC ALLOCATION OF A REALISTIC SIZE

• For insertion of noise instruction:
• threshold-based allocation: find

allocation size such as probability
of overflow is bellow a user defined
threshold

• Much better than worst case!
• See results with threshold = 10-6

| 39© CEA 2018. All rights reserved

• Statically compute size of useful instructions
• Knowledge of size of what comes next

• Information is given to the generator

• Throughout generation: generator computes the size to keep for useful
instructions
• Noise instruction insertion limited if necessary

OVERFLOW PREVENTION

| 40© CEA 2018. All rights reserved

• How to generate a generator using a compiler?
• What transformations does the generator use to generate a different code at

each generations?
• How to guarantee that the allocated buffer is never writable and executable

at the same time?
• How to allocate a realistic size, and to prevent overflows during code

generation?
• Experimental evaluation

OUTLINE

| 41© CEA 2018. All rights reserved

• Performance evaluation
• 15 different test cases
• 4 different configurations

• None: no polymorphism
• Low: only noise instructions,

generation is done every 250 executions
• Medium: all transformations activated, generation is done every execution
• High: all transformations activated, different probability model for noise instructions

insertion, generation is done every execution
• STM32 board (ARM cortex M3 – 24 MHz – 8kB of RAM)

• Security evaluation
• Same as performance evaluation +
• PicoScope 2208A, EM probe RF-U 5-2 (Langer), PA 303 preamplifier (Langer)
• Sampling at 500 Msample/s with 8bits resolution, 24500 samples per trace

RESULTS

| 42© CEA 2018. All rights reserved

RESULTS: PERFORMANCE

| 43© CEA 2018. All rights reserved

• Attack on Sbox output with HW
• Srate at 0.8 in

• 290 traces for unprotected AES
• 3 800 000 traces for configuration low

• 13000 time more traces needed!
• Execution time overhead of 2.5, including generation cost

RESULTS: CPA FOR REFERENCE AND LOW

| 44© CEA 2018. All rights reserved

Reference Low

Medium High

RESULTS: TTEST FOR 4 CONFIGURATIONS

| 45© CEA 2018. All rights reserved

• Automatic AND configurable approach
• Works on any code
• Allows to tune the trade off between performance and security

• Specialization of generators
• Management of memory permission
• Efficient code generation

• Static allocation of realistic size + buffer overflow prevention

• Future work: combination with other countermeasures

CONCLUSION

