
© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Modeling with UML

Reda Bendraou

reda.bendraou{{@}}Lip6.fr

http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

mailto:reda.bendraou{{@}}Lip6.fr
mailto:reda.bendraou{{@}}Lip6.fr
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Static/architecture viewpoint

- OO Basics

-Class Diagram

-Object Diagram

- Package Diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

OO Basics

-OO Vision

- Main Concepts

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

OO Vision

• To consider a system as a set of objects interacting together to
realize the system’s functionalities. Each object encapsulates
structured data and behavior

• Main Concepts

– Object

– Class

– Messages & Methods

– Generalization

– Polymorphism

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Objects

• Objects represent entities from the real world

• Can be concrete entities (customer) or abstract (banking

account)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Objects

Identity

– Objects have a unique identifier, used to make reference to them

State

– Typed variables

– The variables values at a given time “t” determine the object’s
state

Behavior

– Object’s operations

– Offered through interfaces

– Can lead to a change in the object’s state (or not)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Object : Examples

Identity Identity

Behavior

State

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Object: Examples

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Messages & Methods

• Messages

– The way objects interact with each others

– Trigger the behavior of an object (Methods)

• Methods

– Are the responses to the messages received by the object

– Have access to the object’s data

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Class

• An abstraction unit

• A grouping, classification mechanism

– A collection of similar objects

– Each object is a class’s instance

– The object is typed by its class

• Describes the common structure for all the objects in

terms of properties (attributes) and methods

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Class Vs. Objects

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Classes & Instances

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Instance Variables

• Specific to each instance

• Versus Class Variable: shared by all the class’s instances

– Notion of static in Java or C++

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Generalization

• Reusing a class’s structure and behavior by other sub-classes

• Super-class

– Defines common elements for all sub-classes

– Sub-classes extend or redefine the super class’s structure and

behavior

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Generalization: Example

Person

Nurse Doctor

Surgeon Family
Doctor

simple

Vehicle

Land Vehicle Water Vehicle

Car Amphibious Vehicle Boat

multiple

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Class Diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Class Diagram

• A class diagram is a graph of elements connected by relations

• Gives the static aspects of your system (structure, architecture,

main entities, relations, etc.)
Company

Company

Person

Employee
members

0..1 *

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Class

• Detailed representation

• Simplified representation

Nom_classe

Class_Name

Attribut

Attribut : type

Attribut : type = valeur par défaut

Opération

Opération (par1 : type ...) : type retour

. . .

Employee

Person

+name : string

+firstName : string

#id : string

nbPerson : integer

/completeName : string

+getId()

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Visibility

Interface

body private = -

package = ~

protected = #

public = +

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Attributs

Syntax:

 visibility name : type [= defaultValue]

• Visibility:

– ‘+’ public

– ‘#’ protected

– ‘-’ private

• UML predefined types

– Integer, real, string, …

• Can be a Class attribute (static) must be underlined.

• Can be derived (calculated), it is then prefixed by‘/’

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Attributes: Examples

Person

+name : string

+firstName : string

#id : string

nbPerson : integer

/completeName : string

Company

url [3] : string

name : string

Class attribute

Derived Attribute

multiplicity

Operations

• Operation is defined as:
 visibility name(parameter):return

• Parameter is defined as:
 kind name : type

• Kind can be:

– in, out, inout

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Operations: Examples

Company

url [3] : string

name : string

+makeProfit():real

+getWorkingEmployee(): [*] Employee

Employee

+stopWork():boolean

+startWork(In work:string):boolean

Associations

• A very important concept in UML

• A relation between classes

• Very important: An association is a stable link (persistent)

between two objects

Company Employee

<<comment>>

Une association n'est pas

une company

ageLimit

{self.age<60}

* 1..*

Associations

• A binary association is composed of two association ends.

• An association end is defined by:

– A name (the role played by the connected entity)

– Multiplicity (0, 1, *, 1..*, …)

– The kind of aggeragation (composite, aggregation, none)

– Others properties: isNavigable, isChangeable, etc.

Association: Notation

Client Account
1..*

account

Navigability

roles

The name of the association

Multiplicity

0..1

client

Reflexive association

• A reflexive association links objects of the same class

parents

child

Person

N-ary Associations

• Relation between more than two classes

• Can always be represented differently using binary associations

Teacher Course

Teacher

Class

teacher teach

class

Class

Course Teaching
teacher teach

class

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Association’s class

• When the association contains data

Traduction

Association: Navigability

• The way to access the properties (attributes and operations) of

other classes.

• Represented by an arrow at the association end.

Client

Product

concerne

Command

1..*

command 1..*

1..*

Command
do

*

An instance of Client can access the

properties of product (attributes and

operations)

Association : Navigability

Student Course

attends

students attendedCourses

* *

A student follows a set of course From

the student, is’it possible to identify the

courses followed
A course is followed by a set of

students (0 or many).

public class Student

{

 public Course attendedCourses[];

 public Student()

 {

 }

}

public class Course

{

 public Course()

 {

 }

}

• The impact of the navigability, multiplicity and role’s names on the

generated code

• In the case of a reflexive association

• Case of multiple associations between the same two classes

Associations: Mandary Roles

Country

City

capital

cities

Associations: Aggregation & Composition

• Notion of « composed of », « contains » « is constrcuted from», …

• Reinforces the association semantics (a set of objects that belong to

another object)

Student

School Department
has

1 1..*

member

1..*

*

Composition

Aggregation

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Association : Navigabilité

• Le moyen d’accéder aux propriétés (attributs et opérations)

d’autres objets à travers le graph d’objets représentant

l ’application

• Représentée par une flèche

– Attention à la notation en cas de navigabilité dans les 2 sens

Client

Produit

concerne

Commande

1..*

commande 1..*

1..* produit

Commande
fait

*

Une instance de Client pour accéder

aux propriétés de Produit (attributs et

opérations)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Associations: Aggregation & Composition

• Don’t overuse/ misuse of these association kinds!

• Aggregation is not very used => very similar to simple association

– Main point: cycles are not allowed, comparing to associations

• Avoid specifying your diagrams with questions such as : “If this class has to

be deleted should this one be deleted too”? This will result in a class

diagram full of compositions !!

 This kind of association must stay exceptional

Generalization(Inheritance)

• Inheritance is a type of relation in UML

– And not a type of association,

• Inheritance allows to share common (attributes, operations and
associations), and preserves differences

• Can be simple or multiple

– In Java, only simple inheritance

• Identifiable with words such as "is a kind of"

Generalization: Notation

Shape

Rectangle Circle

• We say Generalization / Specialization

• Super classe, sub-classes

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Generalization: Example (with association)

membre Contrat

1..*

joueur entraineur

procède

équipe
0..1

joueur entraineur assistant

membre
estComposee

*

Abstract Classes and Opérations

• An abstract class is a class that contains at least one abstract operation
– Capture common behaviors

– Used to structure the system

– Can not be instantiated

• An abstract operation is an operation whose implementation is left to

subclasses

example

Shape {abstract}

centerX : int;

centerY : int

move()

area() : double {abstract}

Square

length : double

area () : double

Circle

radius : double

area () : double

Drawing

calcTotalArea ()

1..*

factorised
attributes
and methods

common interface

multiple area()
implementations

Drawing works with
Shape, is independent
of exact sub-types

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Interfaces

• A set of operations without implementation

– Just signature

– Can be viewed as an abstract class where all the operations are abstract

– May contain constants

• A very powerful Typing mechanism

• A Class can realize one or multiple interfaces

– Has to give an implementation for each of its operations

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Interfaces: Notation

String

isEqual (Object) : boolean

isGreater (Object) : boolean

hash () : integer
«interface»

Comparable

isEqual (Object) : boolean

isGreater (Object) : boolean

Comparable

String

isEqual (Object) : boolean

isGreater (Object) : boolean

hash () : integer

Or

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Notes (comments)

• Can be attached to any UML element for more precision /

details

– Some tools use them to put code inside for 100% code generation from the

model

• Graphical Notation

Company Employee

<<comment>>

Une association n'est pas

une company

ageLimit

{self.age<60}

* 1..*

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Constraints

• Can be business rules, structural constraints, etc.

• Can be expressed using natural language in notes or some predefined

UML Constraints ({ordred}, {frozen}, etc.)

• Can be formalized using UML OCL(Object Constraint Language),

OMG standard (not addressed in this lecture)

Company Employee

<<comment>>

Une association n'est pas

une company

ageLimit

{self.age<60}

* 1..*

Example of an OCL constraint

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Packages

• A grouping element for

– Classes, use case, diagrams, etc.

• Serves as a Naming space

– Two classes with the same name can’t belong to the same package

• A package can import other packages

• Generalization is also possible

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Les Packages: Example

• Import: elements are imported to the package
with a public visibility and it is transitive

• Access: elements are imported to the package
with a private visibility. Transitivity is not
allowed

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Object Diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Object Diagram

• Is an instance of class diagram

• We talk about objects and links and not classes and associations

• Association roles are optional

• Useful to validate multiplicities in your class diagram, to give examples

• Not used very often in the industry

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Object Diagram: Example

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Point de vue Dynamique

-Diagramme de Séquence

-Diagramme de Collaboration

-Diagramme d’État/Transition

-Diagramme d’Activité

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Components diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Components

• « A component is a self contained unit that encapsulates the

state and behavior of a number of classifiers » [UML 2.0, OMG]

• A lot of definitions around the notion of Component
 “Components are not a technology. Technology people seem to find this hard to understand. Components are about how

customers want to relate to software. They want to be able to buy their software a piece at a time, and to be able to upgrade it

just like they can upgrade their stereo . They want new pieces to work seamlessly with their old pieces, and to be able to upgrade

an their own schedule, not the manufacturer's schedule . They want to be able to mix and match pieces from various

manufacturers. This is a very reasonable requirement. It is just hard to satisfy”. Ralph Johnson

• Components diagram gives an overview of the application’s

architecture in terms of components, interfaces and

dependencies between components (through required/provided

interfaces)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Components diagram: Notation

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Components diagram : Example

Notation UML 2.0

Un Exemple de diagramme de Composants

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Deployment diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Deployment diagram

• Shows how application’s components are physically deployed in

the application’s environment

– Physical elements (servers, departments, etc.)

– Components

• Very useful to think about distribution, performances, hardware,

required, protocols, etc.

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Deployment diagram: Examples

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Readings

• Software Engineering,

– Ian Sommerville, Addison Wesley; 8 edition (15 Jun 2006), ISBN-10: 0321313798

• The Mythical Man-Month

– Frederick P. Brooks JR., Addison-Wesley, 1995

• Cours de Software Engineering du Prof. Bertrand Meyer à cette @:

– http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html

• Cours d’Antoine Beugnard à cette @:

– http://public.enst-bretagne.fr/~beugnard/

• UML Distilled 3rd édition, a brief guide to the standard object modeling language

– Martin Fowler, Addison-Wesley Object Technology Series, 2003, ISBN-10: 0321193687

• UML2 pour les développeurs, cours avec exercices et corrigés

– Xavier Blanc, Isabelle Mounier et Cédric Besse, Edition Eyrolles, 2006, ISBN-2-212-12029-X

• UML 2 par la pratique, études de cas et exercices corrigés,

– Pascal Roques, 6ème édition, Edition Eyrolles, 2008

• Cours très intéressant du Prof. Jean-Marc Jézéquel à cette @:

– http://www.irisa.fr/prive/jezequel/enseignement/PolyUML/poly.pdf

• La page de l’OMG dédiée à UML: http://www.uml.org/

• Cours de Laurent Audibert sur http://laurent-audibert.developpez.com/Cours-UML/html/Cours-UML.html

• Design patterns. Catalogue des modèles de conception réutilisables

– Richard Helm (Auteur), Ralph Johnson (Auteur), John Vlissides (Auteur), Eric Gamma (Auteur), Vuibert
informatique (5 juillet 1999), ISBN-10: 2711786447

http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://www.irisa.fr/prive/jezequel/enseignement/PolyUML/poly.pdf
http://www.uml.org/
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Richard Helm
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Ralph Johnson
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=John Vlissides
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Eric Gamma

